973 resultados para Yeast Two Hybrid


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitotische und postmitotische Vorgänge pflanzlicher Zellen basieren auf der Funktion von Mikrotubuli. Es liegen nur wenige gesicherte Erkenntnisse zur Organisation dieser Multifunktionalität vor. Eine zentrale Bedeutung wird bei der Nukleation der Mikrotubuli an MTOCs durch γ-Tubulin zugeschrieben. Deren Zusammenlagerung an MTOCs ist jedoch noch nicht richtig verstanden. Domänen, die an der Proteinoberfläche exponiert werden, könnten in Interaktionen involviert sein. Hier werden im Besonderen der γ-A und γ-B-Peptivmotiv diskutiert. Es wurde das γ-A- und γ-B-Peptidmotiv des γ-Tubulins hinsichtlich einer Konservierung innerhalb des Pflanzenreiches untersucht. Die beiden Bereiche sind bei den grünen Landpflanzen stark konserviert. Sie divergieren stark zu den einzelligen Grünalgen Chlamydomonas reinhardtii und Chlorella spec. Es wurden daher in der bestehenden phylogentischen Lücke weitere Organismen hinsichtlich des γ-A und γ-B Peptidmotivs untersucht. Auswahlkriterien der Organismen waren Ein-/Mehrzelligkeit, Besitz/Abwesenheit von Centriolen und Besitz/Abwesenheit von Geißeln. Des weiteren wurde mit verschiedenen γ-Tubulin-Konstrukten um das γ-A- und γ-B-Peptidmotiv, gewonnen aus Nicotiana tabacum (BY2) mittels Y2H-System nach Interaktionspartnern gesucht. Bei den Sequenzuntersuchungen des γ-A- und γ-B-Peptidmotivs konnte festgestellt werden, dass die Konservierung innerhalb der Streptophytenlinie erfolgt. Interessant erweist sich die Tatsache, dass dieses Motiv bei den Jochalgen, welche ebenfalls den Streptophyten angehören, nur im γ-A-Peptidmotiv auftritt. Es besteht die Möglichkeit, dass die beiden potentiellen Interaktionspartner verschiedene Proteine als Interaktions-partner besitzen. Durch eine Anwendung eines auf dem GAL4-Protein basierenden Y2H-Systems mit vier unterschiedlichen Konstrukten des γ-Tubulin-A/B-Peptidbereichs als Köder-konstrukt und einer cDNA-Bibliothek als Beutekonstrukt, wurden diverse Sequenzen identifiziert. Identifiziert wurden das Poly(A)-Bindeprotein, Glycerin-aldehyd-3-phosphatdehydrogenase, die S-adenosyl-L-methionine-Synthetase, diverse Proteasom-Untereinheiten, eine sekretorische Peroxidase, eine Ascorbat-Peroxidase, die NtPOX1-Peroxidase und verschiedene Peroxidasen aus Nicotiana tabacum, Sequenzen des Chloroplastengenoms, ein Myosin-ähnliches Protein und eine Sequenz auf dem 5. Chromosom des Medicago truncatula-Klons mth2-16f8 und diverse humane Sequenzen der Proteine DKFZp68 und DKFZp77. Die Ergebnisse weisen auf eine komplexe Funktionsweise der unterschiedlichen Komponenten des pflanzlichen Cytoskeletts und des γ-Tubulins hin. Zur Aufklärung müsste dies in Zukunft mittels anderer genetischer, biochemischer oder funktioneller Methoden untersucht werden. Hypothesen über Interaktionen der Cytoskelettkomponenten können wahrscheinlich nicht allein durch die Anwendung des Y2H-Systems aufgeklärt werden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PDZ-binding motifs are found in the C-terminal tails of numerous integral membrane proteins where they mediate specific protein-protein interactions by binding to PDZ-containing proteins. Conventional yeast two-hybrid screens have been used to probe protein-protein interactions of these soluble C termini. However, to date no in vivo technology has been available to study interactions between the full-length integral membrane proteins and their cognate PDZ-interacting partners. We previously developed a split-ubiquitin membrane yeast two-hybrid (MYTH) system to test interactions between such integral membrane proteins by using a transcriptional output based on cleavage of a transcription factor from the C terminus of membrane-inserted baits. Here we modified MYTH to permit detection of C-terminal PDZ domain interactions by redirecting the transcription factor moiety from the C to the N terminus of a given integral membrane protein thus liberating their native C termini. We successfully applied this "MYTH 2.0" system to five different mammalian full-length renal transporters and identified novel PDZ domain-containing partners of the phosphate (NaPi-IIa) and sulfate (NaS1) transporters that would have otherwise not been detectable. Furthermore this assay was applied to locate the PDZ-binding domain on the NaS1 protein. We showed that the PDZ-binding domain for PDZK1 on NaS1 is upstream of its C terminus, whereas the two interacting proteins, NHERF-1 and NHERF-2, bind at a location closer to the N terminus of NaS1. Moreover NHERF-1 and NHERF-2 increased functional sulfate uptake in Xenopus oocytes when co-expressed with NaS1. Finally we used MYTH 2.0 to demonstrate that the NaPi-IIa transporter homodimerizes via protein-protein interactions within the lipid bilayer. In summary, our study establishes the MYTH 2.0 system as a novel tool for interactive proteomics studies of membrane protein complexes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction between a peptide hormone and extracellular domains of its receptor is a crucial step for initiation of hormone action. We have developed a modification of the yeast two-hybrid system to study this interaction and have used it to characterize the interaction of insulin-like growth factor 1 (IGF-1) with its receptor by using GAL4 transcriptional regulation with a β-galactosidase assay as readout. In this system, IGF-1 and proIGF-1 bound to the cysteine-rich domain, extracellular domain, or entire IGF-1 proreceptor. This interaction was specific. Thus, proinsulin showed no significant interaction with the IGF-1 receptor, while a chimeric proinsulin containing the C-peptide of IGF-1 had an intermediate interaction, consistent with its affinity for the IGF-1 receptor. Over 2000 IGF-1 mutants were generated by PCR and screened for interaction with the color assay. About 40% showed a strong interaction, 20% showed an intermediate interaction, and 40% give little or no signal. Of 50 mutants that were sequenced, several (Leu-5 → His, Glu-9 → Val, Arg-37 → Gly, and Met-59 → Leu) appeared to enhance receptor association, others resulted in weaker receptor interaction (Tyr-31 → Phe and Ile-43 → Phe), and two gave no detectable signal (Leu-14 → Arg and Glu-46 → Ala). Using PCR-based mutagenesis with proinsulin, we also identified a gain of function mutant (proinsulin Leu-17 → Pro) that allowed for a strong IGF-1–receptor interaction. These data demonstrate that the specificity of the interaction between a hormone and its receptor can be characterized with high efficiency in the two-hybrid system and that novel hormone analogues may be found by this method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural fate specification in Drosophila is promoted by the products of the proneural genes, such as those of the achaete–scute complex, and antagonized by the products of the Enhancer of split [E(spl)] complex, hairy, and extramacrochaetae. As all these proteins bear a helix-loop-helix (HLH) dimerization domain, we investigated their potential pairwise interactions using the yeast two-hybrid system. The fidelity of the system was established by its ability to closely reproduce the already documented interactions among Da, Ac, Sc, and Extramacrochaetae. We show that the seven E(spl) basic HLH proteins can form homo- and heterodimers inter-se with distinct preferences. We further show that a subset of E(spl) proteins can heterodimerize with Da, another subset can heterodimerize with proneural proteins, and yet another with both, indicating specialization within the E(spl) family. Hairy displays no interactions with any of the HLH proteins tested. It does interact with the non-HLH protein Groucho, which itself interacts with all E(spl) basic HLH proteins, but with none of the proneural proteins or Da. We investigated the structural requirements for some of these interactions by site-specific and deletion mutagenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The kinetics of amyloid fibril formation by beta-amyloid peptide (Abeta) are typical of a nucleation-dependent polymerization mechanism. This type of mechanism suggests that the study of the interaction of Abeta with itself can provide some valuable insights into Alzheimer disease amyloidosis. Interaction of Abeta with itself was explored with the yeast two-hybrid system. Fusion proteins were created by linking the Abeta fragment to a LexA DNA-binding domain (bait) and also to a B42 transactivation domain (prey). Protein-protein interactions were measured by expression of these fusion proteins in Saccharomyces cerevisiae harboring lacZ (beta-galactosidase) and LEU2 (leucine utilization) genes under the control of LexA-dependent operators. This approach suggests that the Abeta molecule is capable of interacting with itself in vivo in the yeast cell nucleus. LexA protein fused to the Drosophila protein bicoid (LexA-bicoid) failed to interact with the B42 fragment fused to Abeta, indicating that the observed Abeta-Abeta interaction was specific. Specificity was further shown by the finding that no significant interaction was observed in yeast expressing LexA-Abeta bait when the B42 transactivation domain was fused to an Abeta fragment with Phe-Phe at residues 19 and 20 replaced by Thr-Thr (AbetaTT), a finding that is consistent with in vitro observations made by others. Moreover, when a peptide fragment bearing this substitution was mixed with native Abeta-(1-40), it inhibited formation of fibrils in vitro as examined by electron microscopy. The findings presented in this paper suggest that the two-hybrid system can be used to study the interaction of Abeta monomers and to define the peptide sequences that may be important in nucleation-dependent aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cdc25 is a mitosis triggering phosphatase in Schizosaccharomyces pombe, and is transported in to the nucleus during G2 phase by the importin-β protein Sal3. Cdc25 triggers mitosis and cell division by dephosphorylating tyrosine 15 of Cdc2. In sal3 mutants, Cdc25 is not transported into the nucleus and the cells halt in G2. The purpose of this study is to use a two-hybrid system to determine the nature of the relationship between Sal3 and Cdc25. Previous research has failed to detect any interaction between the two proteins, but specific modifications were made to the two-hybrid system in this study including the separation of Sal3 into its two binding domains, the addition of fluorescent tags to the fusion protein, and the reversal of plasmids in the fusion proteins. Unique PCR primers were successfully designed, based on a multiple alignment of Sal3 and its homologues, to separate Sal3 into its two domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein–protein interactions play crucial roles in the execution of various biological functions. Accordingly, their comprehensive description would contribute considerably to the functional interpretation of fully sequenced genomes, which are flooded with novel genes of unpredictable functions. We previously developed a system to examine two-hybrid interactions in all possible combinations between the ≈6,000 proteins of the budding yeast Saccharomyces cerevisiae. Here we have completed the comprehensive analysis using this system to identify 4,549 two-hybrid interactions among 3,278 proteins. Unexpectedly, these data do not largely overlap with those obtained by the other project [Uetz, P., et al. (2000) Nature (London) 403, 623–627] and hence have substantially expanded our knowledge on the protein interaction space or interactome of the yeast. Cumulative connection of these binary interactions generates a single huge network linking the vast majority of the proteins. Bioinformatics-aided selection of biologically relevant interactions highlights various intriguing subnetworks. They include, for instance, the one that had successfully foreseen the involvement of a novel protein in spindle pole body function as well as the one that may uncover a hitherto unidentified multiprotein complex potentially participating in the process of vesicular transport. Our data would thus significantly expand and improve the protein interaction map for the exploration of genome functions that eventually leads to thorough understanding of the cell as a molecular system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many biological processes rely upon protein-protein interactions. Hence, detailed analysis of these interactions is critical for their understanding. Due to the complexities involved, genetic approaches are often needed. In yeast and phage, genetic characterizations of protein complexes are possible. However, in multicellular organisms, such characterizations are limited by the lack of powerful selection systems. Herein we describe genetic selections that allow single amino acid changes that disrupt protein-protein interactions to be selected from large libraries of randomly generated mutant alleles. The strategy, based on a yeast reverse two-hybrid system, involves a first-step negative selection for mutations that affect interaction, followed by a second-step positive selection for a subset of these mutations that maintain expression of full-length protein (two-step selection). We have selected such mutations in the transcription factor E2F1 that affect its ability to heterodimerize with DP1. The mutations obtained identified a putative helix in the marked box, a region conserved among E2F family members, as an important determinant for interaction. This two-step selection procedure can be used to characterize any interaction domain that can be tested in the two-hybrid system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thioredoxins are small, regulatory proteins with a mass of approximately 12 kDa and a characteristic conserved active center, which is represented in the pentapeptide trp-cys-gly-pro-cys. Up to now it is not possible to present a complete list of thioredoxin interaction partners because there is no predictable sequence in the target enzymes where thioredoxins can interact with. To get closer information about the functions and possible interaction partners of the three thioredoxins from the social soil amoeba Dictyostelium discoideum (DdTrx1 - 3) we have chosen two different strategies. In the first one the thioredoxin levels in the cell should changed by different mutants. But both the antisense technique as well as the creation of knock out mutants were not appropiate strategies in this case. Just an thioredoxin overexpressing mutant results in a developmental phenotype which allows some conclusions for possible functions of the thioredoxin in Dictyostelium discoideum. The second strategie was the two hybrid system where thioredoxin interactions partners can identified systematically. After a screening with a cDNA library from Dictyostelium 13 potential interaction partners could be detected, among them a ribonucleotid reductase, TRFA, two different cytochrome c oxidase subunits, filopodin, three ribosomal proteins, the elongationfactor 1a and the alcohol dehydrogenase from yeast. The verification of the interaction between thioredoxin and these two hybrid clones happened indirectly by a dobble mutant of thioredoxin 1, where the cysteines in the active center were replaced by redox-inactive serins. Further examinations of two choosen candidates resulted that the alcohol dehydrogenase from yeast is a thioredoxin-modululated enzym and that there is an interaction between the elongationfactor 1a and the thioredoxin 1 from Dictyostelium discoideum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a two-hybrid strategy for detection of interactions with transactivator proteins. This repressed transactivator (RTA) system employs the N-terminal repression domain of the yeast general repressor TUP1. TUP1-GAL80 fusion proteins, when coexpressed with GAL4, are shown to inhibit transcription of GAL4-dependent reporter genes. This effect requires the C-terminal 30 residues of GAL4, which are required for interaction with GAL80 in vitro. Furthermore, repression of GAL transcription by TUP1-GAL80 requires SRB10, demonstrating that the TUP1 repression domain, in the context of a two-hybrid interaction, functions by the same mechanism as endogenous TUP1. Using this strategy, we demonstrate interactions between the mammalian basic helix–loop–helix proteins MyoD and E12, and between c-Myc and Bin-1. We have also identified interacting clones from a TUP1-cDNA fusion expression library by using GAL4-VP16 as a bait fusion. These results demonstrate that RTA is generally applicable for identifying and characterizing interactions with transactivator proteins in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the "reverse two-hybrid system" and "reverse one-hybrid system" facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.